Resolvent and Spectral Measure on Non-Trapping Asymptotically Hyperbolic Manifolds II: Spectral Measure, Restriction Theorem, Spectral Multipliers

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the spectral theory and dynamics of asymptotically hyperbolic manifolds

— We present a brief survey of the spectral theory and dynamics of infinite volume asymptotically hyperbolic manifolds. Beginning with their geometry and examples, we proceed to their spectral and scattering theories, dynamics, and the physical description of their quantum and classical mechanics. We conclude with a discussion of recent results, ideas, and conjectures. Résumé. — Cet article est...

متن کامل

A note on spectral mapping theorem

This paper aims to present the well-known spectral mapping theorem for multi-variable functions.

متن کامل

Spectral Measure and Approximation of Homogenized Coefficients

Abstract. This article deals with the numerical approximation of effective coefficients in stochastic homogenization of discrete linear elliptic equations. The originality of this work is the use of a well-known abstract spectral representation formula to design and analyze effective and computable approximations of the homogenized coefficients. In particular, we show that information on the ed...

متن کامل

Convergence of the Spectral Measure of Non-normal Matrices

We discuss regularization by noise of the spectrum of large random non-normal matrices. Under suitable conditions, we show that the regularization of a sequence of matrices that converges in ∗-moments to a regular element a by the addition of a polynomially vanishing Gaussian Ginibre matrix forces the empirical measure of eigenvalues to converge to the Brown measure of a.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annales de l’institut Fourier

سال: 2018

ISSN: 0373-0956,1777-5310

DOI: 10.5802/aif.3183